Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 396
Filter
1.
Emerg Microbes Infect ; 12(2): 2222850, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-20237574

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in wastewater. Wastewater-based epidemiology (WBE) is a practical and cost-effective tool for the assessment and controlling of pandemics and probably for examining SARS-CoV-2 presence. Implementation of WBE during the outbreaks is not without limitations. Temperature, suspended solids, pH, and disinfectants affect the stability of viruses in wastewater. Due to these limitations, instruments and techniques have been utilized to detect SARS-CoV-2. SARS-CoV-2 has been detected in sewage using various concentration methods and computer-aided analyzes. RT-qPCR, ddRT-PCR, multiplex PCR, RT-LAMP, and electrochemical immunosensors have been employed to detect low levels of viral contamination. Inactivation of SARS-CoV-2 is a crucial preventive measure against coronavirus disease 2019 (COVID-19). To better assess the role of wastewater as a transmission route, detection, and quantification methods need to be refined. In this paper, the latest improvements in quantification, detection, and inactivation of SARS-CoV-2 in wastewater are explained. Finally, limitations and future research recommendations are thoroughly described.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Wastewater , Water , Immunoassay
2.
J Spec Oper Med ; 23(2): 70-72, 2023 Jun 23.
Article in English | MEDLINE | ID: covidwho-20237091

ABSTRACT

SARS-CoV-2 is the virus responsible for the disease that is known as COVID-19. While there have been numerous studies detailing the survival rates of SARS-CoV-2 on various materials, there are currently no published data regarding whether this virus is stable on standard military uniforms. Consequently, there are no standard operating procedures for washing uniforms once exposed to the virus. This study aimed to determine whether SARS-CoV-2 could be removed from Army combat uniform material by washing with a commercially available detergent and tap water. Washing the fabric with detergent followed by a rinse step with tap water effectively removes detectable viral particles. Importantly, it was found that washing with hot water alone was not effective. Therefore, it is recommended that military personnel wash their uniforms with detergent and water as soon as possible after exposure to SARS-CoV-2; hot water should not be used as a substitute for detergent.


Subject(s)
COVID-19 , Military Personnel , Humans , SARS-CoV-2 , COVID-19/prevention & control , Detergents/therapeutic use , Water
3.
Int J Biol Macromol ; 243: 125228, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-20234527

ABSTRACT

Melaleuca alternifolia essential oil (MaEO) is a green antimicrobial agent suitable for confection eco-friendly disinfectants to substitute conventional chemical disinfectants commonly formulated with toxic substances that cause dangerous environmental impacts. In this contribution, MaEO-in-water Pickering emulsions were successfully stabilized with cellulose nanofibrils (CNFs) by a simple mixing procedure. MaEO and the emulsions presented antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, MaEO deactivated the SARS-CoV-2 virions immediately. FT-Raman and FTIR spectroscopies indicate that the CNF stabilizes the MaEO droplets in water by the dipole-induced-dipole interactions and hydrogen bonds. The factorial design of experiments (DoE) indicates that CNF content and mixing time have significant effects on preventing the MaEO droplets' coalescence during 30-day shelf life. The bacteria inhibition zone assays show that the most stable emulsions showed antimicrobial activity comparable to commercial disinfectant agents such as hypochlorite. The MaEO/water stabilized-CNF emulsion is a promissory natural disinfectant with antibacterial activity against these bacteria strains, including the capability to damage the spike proteins at the SARS-CoV-2 particle surface after 15 min of direct contact when the MaEO concentration is 30 % v/v.


Subject(s)
Anti-Infective Agents , COVID-19 , Disinfectants , Melaleuca , Tea Tree Oil , Cellulose/chemistry , Emulsions/chemistry , SARS-CoV-2 , Escherichia coli , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Water/chemistry
4.
Mikrobiyol Bul ; 57(2): 317-329, 2023 Apr.
Article in Turkish | MEDLINE | ID: covidwho-2328207

ABSTRACT

Outbreaks due to parasites can occur in various parts of the world and in different periods. These outbreaks can be caused by water and food, as well as by human-to-human or vector-borne transmission. Cryptosporidium spp. and Giardia intestinalis were among the pathogens that affected most people in water-borne outbreaks occurred in the world between 2010-2014. The chlorine resistance of both Cryptosporidium spp. and Giardia spp. leads to the widespread detection of these parasites in waterborne outbreaks. These two protozoans cause self-limiting watery diarrhea in immunocompetent individuals, but they can also cause chronic disease in certain situations. Apart from this, parasites such as Cyclospora spp., Cryptosporidium spp., Giardia intestinalis, Trichinella spp. and Toxoplasma gondii can also cause foodborne outbreaks. In Türkiye, outbreaks related to these parasites have emerged with the neglect of the notification. Some parasites transmitted from person to person can also pose a threat to public health in certain periods. Head lice, the most common examples of such parasites, can cause outbreaks in certain periods. Another example for human-induced parasitic outbreaks is scabies. There has been an increase in scabies rates in the world and in Türkiye, especially due to the Coronavirus disease-2019 (COVID-19) pandemic. In the first period of the pandemic, it was thought that due to the curfew restrictions, family members spending time at home might have led to an increase in the rate of scabies. On the other hand, as a result of the disruption of services due to COVID-19, the cases of malaria, a vector-borne disease, and the resulting deaths increased in 2020 compared to 2019 in the world. Although only imported malaria cases are detected in Türkiye today, there is a potential for an outbreak to occur at any time due to the presence of malaria vectors. An outbreak of imported malaria occurred in Mardin in 2012 due to a lorry driver entering the country from an endemic region. Immigrants that reside in Türkiye pose a risk for some infectious diseases due to the circumstances during migration or the conditions in their living areas. Leishmaniasis, which maintains its importance in the Mediterranean region, is another vector-borne disease and can be detected in Türkiye, especially in regions where immigrants reside. Bed bug infestations, which have increased recently, also closely affect the provision of health services. It is important to implement regular inspections in regions with outbreak potential, and to ensure the continuity of hygiene conditions and health services to prevent a possible outbreak. In case of an outbreak, different centers should cooperate, health authorities and academics should act together, patients and their contacts should be identified quickly and necessary precautions should be taken, the society should be informed and the outbreak should be taken under control in a short time. In this review article, outbreaks caused by parasites were examined under four headings as water, food, human and vector/arthropod-borne and examples from the world and Türkiye were given for these outbreaks.


Subject(s)
COVID-19 , Cryptosporidiosis , Cryptosporidium , Parasites , Scabies , Animals , Humans , Cryptosporidiosis/epidemiology , Disease Outbreaks , Water/parasitology
5.
Ultrason Sonochem ; 97: 106463, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2328013

ABSTRACT

Water pollution management, reduction, and elimination are critical challenges of the current era that threaten millions of lives. By spreading the coronavirus in December 2019, the use of antibiotics, such as azithromycin increased. This drug was not metabolized, and entered the surface waters. ZIF-8/Zeolit composite was made by the sonochemical method. Furthermore, the effect of pH, the regeneration of adsorbents, kinetics, isotherms, and thermodynamics were attended. The adsorption capacity of zeolite, ZIF-8, and the composite ZIF-8/Zeolite were 22.37, 235.3, and 131 mg/g, respectively. The adsorbent reaches the equilibrium in 60 min, and at pH = 8. The adsorption process was spontaneous, endothermic associated with increased entropy. The results of the experiment were analyzed using Langmuir isotherms and pseudo-second order kinetic models with a R2 of 0.99, and successfully removing the composite by 85% in 10 cycles. It indicated that the maximum amount of drug could be removed with a small amount of composite.


Subject(s)
Water Pollutants, Chemical , Zeolites , Azithromycin , Zeolites/chemistry , Water Pollutants, Chemical/chemistry , Thermodynamics , Kinetics , Adsorption , Water , Pharmaceutical Preparations , Hydrogen-Ion Concentration
6.
J Neurosurg Sci ; 67(2): 260-261, 2023 04.
Article in English | MEDLINE | ID: covidwho-2325854

Subject(s)
Diving , Humans , Water
7.
Proc Natl Acad Sci U S A ; 120(22): e2217232120, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2325532

ABSTRACT

As severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections have been shown to affect the central nervous system, the investigation of associated alterations of brain structure and neuropsychological sequelae is crucial to help address future health care needs. Therefore, we performed a comprehensive neuroimaging and neuropsychological assessment of 223 nonvaccinated individuals recovered from a mild to moderate SARS-CoV-2 infection (100 female/123 male, age [years], mean ± SD, 55.54 ± 7.07; median 9.7 mo after infection) in comparison with 223 matched controls (93 female/130 male, 55.74 ± 6.60) within the framework of the Hamburg City Health Study. Primary study outcomes were advanced diffusion MRI measures of white matter microstructure, cortical thickness, white matter hyperintensity load, and neuropsychological test scores. Among all 11 MRI markers tested, significant differences were found in global measures of mean diffusivity (MD) and extracellular free water which were elevated in the white matter of post-SARS-CoV-2 individuals compared to matched controls (free water: 0.148 ± 0.018 vs. 0.142 ± 0.017, P < 0.001; MD [10-3 mm2/s]: 0.747 ± 0.021 vs. 0.740 ± 0.020, P < 0.001). Group classification accuracy based on diffusion imaging markers was up to 80%. Neuropsychological test scores did not significantly differ between groups. Collectively, our findings suggest that subtle changes in white matter extracellular water content last beyond the acute infection with SARS-CoV-2. However, in our sample, a mild to moderate SARS-CoV-2 infection was not associated with neuropsychological deficits, significant changes in cortical structure, or vascular lesions several months after recovery. External validation of our findings and longitudinal follow-up investigations are needed.


Subject(s)
COVID-19 , White Matter , Female , Male , Humans , SARS-CoV-2 , Brain , Neuroimaging , Neuropsychological Tests , Water
8.
Sci Total Environ ; 892: 164309, 2023 Sep 20.
Article in English | MEDLINE | ID: covidwho-2324753

ABSTRACT

Water contamination by pharmaceuticals is a global concern due to their potential negative effects on aquatic ecosystems and human health. This study examined the presence of three repositioned drugs used for COVID-19 treatment: azithromycin (AZI), ivermectin (IVE) and hydroxychloroquine (HCQ) in water samples collected from three urban rivers in Curitiba, Brazil, during August and September 2020. We conducted a risk assessment and evaluated the individual (0, 2, 4, 20, 100 and 200 µg.L-1) and combined (mix of the drugs at 2 µg.L-1) effects of the antimicrobials on the cyanobacterium Synechococcus elongatus and microalga Chlorella vulgaris. The liquid chromatography coupled to mass spectrometry results showed that AZI and IVE were present in all collected samples, while HCQ occurred in 78 % of them. In all the studied sites, the concentrations found of AZI (up to 2.85 µg.L-1) and HCQ (up to 2.97 µg.L-1) represent environmental risks for the studied species, while IVE (up to 3.2 µg.L-1) was a risk only for Chlorella vulgaris. The hazard quotients (HQ) indices demonstrated that the microalga was less sensitive to the drugs than the cyanobacteria. HCQ and IVE had the highest values of HQ for the cyanobacteria and microalga, respectively, being the most toxic drugs for each species. Interactive effects of drugs were observed on growth, photosynthesis and antioxidant activity. The treatment with AZI + IVE resulted in cyanobacteria death, while exposure to the mixture of all three drugs led to decreased growth and photosynthesis in the cells. On the other hand, no effect on growth was observed for C. vulgaris, although photosynthesis has been negatively affected by all treatments. The use of AZI, IVE and HCQ for COVID-19 treatment may have generated surface water contamination, which could increased their potential ecotoxicological effects. This raises the need to further investigation into their effects on aquatic ecosystems.


Subject(s)
COVID-19 , Chlorella vulgaris , Microalgae , Water Pollutants, Chemical , Humans , Ecosystem , COVID-19 Drug Treatment , Hydroxychloroquine/analysis , Hydroxychloroquine/pharmacology , Azithromycin/toxicity , Pharmaceutical Preparations , Water , Water Pollutants, Chemical/analysis
9.
Anal Chem ; 95(21): 8332-8339, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2324375

ABSTRACT

Poly(dimethylsiloxane) (PDMS) is used in microfluidics owing to its biocompatibility and simple fabrication. However, its intrinsic hydrophobicity and biofouling inhibit its microfluidic applications. Conformal hydrogel-skin coating for PDMS microchannels, involving the microstamping transfer of the masking layer, is reported herein. A selective uniform hydrogel layer with a thickness of ∼1 µm was coated in diverse PDMS microchannels with a resolution of ∼3 µm, maintaining its structure and hydrophilicity after 180 days (6 months). The wettability transition of PDMS was demonstrated through the switched emulsification in a flow-focusing device (water-in-oil [pristine PDMS] to oil-in-water [hydrophilic PDMS]). A one-step bead-based immunoassay was performed to detect the anti-severe acute respiratory syndrome coronavirus 2 IgG using a hydrogel-skin-coated point-of-care platform.


Subject(s)
COVID-19 , Microfluidics , Humans , Hydrogels , Dimethylpolysiloxanes/chemistry , Wettability , Water
10.
Chemosphere ; 333: 138885, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2327429

ABSTRACT

The COVID-19 pandemic resulted in increasing the usage of iodinated contrast media (ICM), and thus an increase in the prevalence of ICM-contaminated wastewater. While ICM is generally safe, this has the potential to be problematic because as medical wastewater is treated and disinfected, various ICM-derived disinfection byproducts (DBPs) may be generated and released into the environment. However, little information was available about whether ICM-derived DBPs are toxic to aquatic organisms. In this study, the degradation of three typical ICM (iopamidol, iohexol, diatrizoate) at initial concentration of 10 µM and 100 µM in chlorination and peracetic acid without or with NH4+ was investigated, and the potential acute toxicity of treated disinfected water containing potential ICM-derived DBPs on Daphnia magna, Scenedesmus sp. and Danio rerio was tested. The degradation results suggested that only iopamidol was significantly degraded (level of degradation >98%) by chlorination, and the degradation rate of iohexol and diatrizoate were significantly increased in chlorination with NH4+. All three ICM were not degraded in peracetic acid. The toxicity analysis results indicate that only the disinfected water of iopamidol and iohexol by chlorination with NH4+ were toxic to at least one aquatic organism. These results highlighted that the potential ecological risk of ICM-contained medical wastewater by chlorination with NH4+ should not be neglected, and peracetic acid may be an environment-friendly alternative for the disinfection of wastewater containing ICM.


Subject(s)
COVID-19 , Iodine Compounds , Scenedesmus , Water Pollutants, Chemical , Animals , Humans , Iohexol/toxicity , Iohexol/analysis , Iopamidol , Disinfection/methods , Diatrizoate/analysis , Daphnia , Zebrafish , Peracetic Acid , Wastewater/toxicity , Pandemics , Contrast Media/toxicity , Contrast Media/analysis , Water/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Halogenation
11.
J Phys Chem B ; 127(20): 4406-4414, 2023 05 25.
Article in English | MEDLINE | ID: covidwho-2318735

ABSTRACT

The receptor binding domain (RBD) of spike proteins plays a crucial role in the process of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) attachment to the human angiotensin-converting enzyme 2 (ACE2). The N501Y mutation and later mutations introduced extra positive charges on the spike RBD and resulted in higher transmissibility, likely due to stronger binding with the highly negatively charged ACE2. Consequently, many studies have been devoted to understanding the molecular mechanism of spike protein binding with the ACE2 receptor. Most of the theoretical studies, however, have been done on isolated proteins. ACE2 is a transmembrane protein; thus, it is important to understand the interaction of spike proteins with ACE2 in a lipid matrix. In this study, the adsorption of ACE2 and spike (N501Y) RBD at a lipid/water interface was studied using the heterodyne-detected vibrational sum frequency generation (HD-VSFG) technique. The technique is a non-linear optical spectroscopy which measures vibrational spectra of molecules at an interface and provides information on their structure and orientation. It is found that ACE2 is effectively adsorbed at the positively charged 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP) lipid monolayer via electrostatic interactions. The adsorption of ACE2 at the DPTAP monolayer causes a reorganization of interfacial water (D2O) from the D-down to the D-up orientation, indicating that the originally positively charged DPTAP interface becomes negatively charged due to ACE2 adsorption. The negatively charged interface (DPTAP/ACE2) allows further adsorption of positively charged spike RBD. HD-VSFG spectra in the amide I region show differences for spike (N501Y) RBD adsorbed at D2O, DPTAP, and DPTAP/ACE2 interfaces. A red shift observed for the spectra of spike RBD/DPTAP suggests that spike RBD oligomers are formed upon contact with DPTAP lipids.


Subject(s)
Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus , Humans , Adsorption , Lipids , Mutation , Propane , Protein Binding , SARS-CoV-2 , Water
12.
Environ Sci Technol ; 57(21): 7913-7923, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2315445

ABSTRACT

Antiviral transformation products (TPs) generated during wastewater treatment are an environmental concern, as their discharge, in considerable amounts, into natural waters during a pandemic can pose possible risks to the aquatic environment. Identification of the hazardous TPs generated from antivirals during wastewater treatment is important. Herein, chloroquine phosphate (CQP), which was widely used during the coronavirus disease-19 (COVID-19) pandemic, was selected for research. We investigated the TPs generated from CQP during water chlorination. Zebrafish (Danio rerio) embryos were used to assess the developmental toxicity of CQP after water chlorination, and hazardous TPs were estimated using effect-directed analysis (EDA). Principal component analysis revealed that the developmental toxicity induced by chlorinated samples could be relevant to the formation of some halogenated TPs. Fractionation of the hazardous chlorinated sample, along with the bioassay and chemical analysis, identified halogenated TP387 as the main hazardous TP contributing to the developmental toxicity induced by chlorinated samples. TP387 could also be formed in real wastewater during chlorination in environmentally relevant conditions. This study provides a scientific basis for the further assessment of environmental risks of CQP after water chlorination and describes a method for identifying unknown hazardous TPs generated from pharmaceuticals during wastewater treatment.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Disinfection/methods , Chlorine/analysis , Zebrafish , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , COVID-19 Drug Treatment , Water
13.
Virol J ; 20(1): 84, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2315032

ABSTRACT

BACKGROUND: Thermal inactivation is a conventional and effective method of eliminating the infectivity of pathogens from specimens in clinical and biological laboratories, and reducing the risk of occupational exposure and environmental contamination. During the COVID-19 pandemic, specimens from patients and potentially infected individuals were heat treated and processed under BSL-2 conditions in a safe, cost-effective, and timely manner. The temperature and duration of heat treatment are optimized and standardized in the protocol according to the susceptibility of the pathogen and the impact on the integrity of the specimens, but the heating device is often undefined. Devices and medium transferring the thermal energy vary in heating rate, specific heat capacity, and conductivity, resulting in variations in efficiency and inactivation outcome that may compromise biosafety and downstream biological assays. METHODS: We evaluated the water bath and hot air oven in terms of pathogen inactivation efficiency, which are the most commonly used inactivation devices in hospitals and biological laboratories. By evaluating the temperature equilibrium and viral titer elimination under various conditions, we studied the devices and their inactivation outcomes under identical treatment protocol, and to analyzed the factors, such as energy conductivity, specific heat capacity, and heating rate, underlying the inactivation efficiencies. RESULTS: We compared thermal inactivation of coronavirus using different devices, and have found that the water bath was more efficient at reducing infectivity, with higher heat transfer and thermal equilibration than a forced hot air oven. In addition to the efficiency, the water bath showed relative consistency in temperature equilibration of samples of different volumes, reduced the need for prolonged heating, and eliminated the risk of pathogen spread by forced airflow. CONCLUSIONS: Our data support the proposal to define the heating device in the thermal inactivation protocol and in the specimen management policy.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Pandemics/prevention & control , Hot Temperature , Temperature , Water
14.
J Hazard Mater ; 455: 131587, 2023 08 05.
Article in English | MEDLINE | ID: covidwho-2309599

ABSTRACT

Discarded face masks from the global COVID-19 pandemic have contributed significantly to plastic pollution in surface water, whereas their potential as a reservoir for aquatic pollutants is not well understood. Herein, we conducted a field experiment along a human-impacted urban river, investigating the variations of antibiotic resistance genes (ARGs), pathogens, and water-borne contaminants in commonly-used face masks. Results showed that high-biomass biofilms formed on face masks selectively enriched more ARGs than stone biofilm (0.08-0.22 vs 0.07-0.15 copies/16 S rRNA gene copies) from bulk water, which mainly due to unique microbial communities, enhanced horizontal gene transfer, and selective pressure of accumulated contaminants based on redundancy analysis and variation partitioning analysis. Several human opportunistic pathogens (e.g., Acinetobacter, Escherichia-Shigella, Bacillus, and Klebsiella), which are considered potential ARG carriers, were also greatly concentrated in face-mask biofilms, imposing a potential threat to aquatic ecological environment and human health. Moreover, wastewater treatment plant effluents, as an important source of pollutants to urban rivers, further aggravated the abundances of ARGs and opportunistic pathogens in face-mask biofilms. Our findings demonstrated that discarded face masks provide a hotspot for the proliferation and spread of ARGs and pathogens in urban water, highlighting the urgent requirement for implementing stricter regulations in face mask disposal.


Subject(s)
COVID-19 , Genes, Bacterial , Humans , Masks , Rivers , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Pandemics , Water , Biofilms
15.
Water Res ; 239: 120020, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2307866

ABSTRACT

Environment disinfection effectively curbs transmission of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). However, elevated concentration of free available chlorine (FAC) in disinfectants can be discharged into surface water, generating toxic disinfection byproducts (DBPs). The impact of solar photolysis of FAC on natural organic matter (NOM) to form DBPs has not been well studied. In this work, solar photolysis of FAC was found to result in higher formation of DBPs, DBPs formation potential (DBPsFP), total organic chlorine (TOCl) and lower specific ultraviolet absorbance at 254 nm (SUVA254), compared to dark chlorination. In solar photolysis of FAC, formation of total DBPs was promoted by pH=8, but hindered by the addition of HCO3-, radical scavenger or deoxygenation, while addition of NO3-and NH4+both enhanced the formation of nitrogenous DBPs. Differences in the formation of DBPs in solar photolysis of FAC under various conditions were influenced by reactive species. The formation of trichloromethane (TCM) and haloacetic acids (HAAs) in solar photolysis of FAC positively correlated with the steady-state concentrations of ClO• and O3. The steady-state concentrations of •NO and •NH2 positively correlated with the formation of halonitromethanes (HNMs). HAAs and haloacetonitriles (HANs) mainly contributed to calculated cytotoxicity of DBPs. This study demonstrates that solar photolysis of FAC may significantly impact the formation of DBPs in surface water due to extensive use of disinfectants containing FAC during SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Humans , Disinfection , Chlorine , Photolysis , SARS-CoV-2 , Halogenation , Water , Water Pollutants, Chemical/analysis
16.
Ann Agric Environ Med ; 29(4): 477-482, 2022 Dec 27.
Article in English | MEDLINE | ID: covidwho-2307358

ABSTRACT

INTRODUCTION AND OBJECTIVE: Micropollutants (MPs) are defined as persistent and biologically-active substances which occur in the environment in trace amounts, mainly as a result of industrial processes and human domestic activity. The published experimental data prove that, among other things, MPs present in the environment may also affect and disturb hormonal balance in humans, resulting in impairment of the reproductive function. In addition to the many MPs disrupting endocrine function described in literature and which exert an effect on human reproductive function, the study presents a review of current literature concerning the exposure to Bisphenol A, phthalates, organochlorine pesticides, and pyrethroids. REVIEW METHODS: Two independent authors searched in PubMed and Google scholar (any date until September 2022) for studies concerning chosen endocrine-disrupting MPs in water and their effects on human fertility and fecundity. BRIEF DESCRIPTION OF THE STATE OF KNOWLEDGE: The review of the literature showed that EDMs present in the environment may create risk in the prenatal and postnatal development following premature birth, and exert a negative effect on fertility and reproductive functions in humans, especially during the perinatal period. SUMMARY: The presented review of literature indicates a negative effect of exposure to BPA, phthalates, OC and OP pesticides, as well as to pyrethroids, regarding human reproductive health. It also demonstrated considerable differences according to gender. Generally, there is a definitely stronger evidence for the presence of a cause-effect relationship between the discussed EDMs and a decreased fertility and fecundity in males. The negative effect of exposure to Bisphenol A, phthalates, selected organochlorine pesticides and pyrethroids appears to be quite well documented.


Subject(s)
Environmental Pollutants , Pesticides , Pyrethrins , Male , Pregnancy , Female , Humans , Water , Fertility , Pesticides/toxicity , Pyrethrins/toxicity
17.
Environ Sci Pollut Res Int ; 30(24): 64800-64826, 2023 May.
Article in English | MEDLINE | ID: covidwho-2299462

ABSTRACT

The ubiquitous nature of microplastics (MPs) in nature and the risks they pose on the environment and human health have led to an increased research interest in the topic. Despite being an area of high plastic production and consumption, studies on MPs in the Middle East and North Africa (MENA) region have been limited. However, the region witnessed a research surge in 2021 attributed to the COVID-19 pandemic. In this review, a total of 97 studies were analyzed based on their environmental compartments (marine, freshwater, air, and terrestrial) and matrices (sediments, water columns, biota, soil, etc.). Then, the MP concentrations and polymer types were utilized to conduct a risk assessment to provide a critical analysis of the data. The highest MP concentrations recorded in the marine water column and sediments were in the Mediterranean Sea in Tunisia with 400 items/m3 and 7960 items/kg of sediments, respectively. The number of MPs in biota ranged between 0 and 7525 per individual across all the aquatic compartments. For the air compartment, a school classroom had 56,000 items/g of dust in Iran due to the confined space. Very high risks in the sediment samples (Eri > 1500) were recorded in the Caspian Sea and Arab/Persian Gulf due to their closed or semi-closed nature that promotes sedimentation. The risk factors obtained are sensitive to the reference concentration which calls for the development of more reliable risk assessment approaches. Finally, more studies are needed in understudied MENA environmental compartments such as groundwater, deserts, and estuaries.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics/analysis , Plastics/analysis , Ecosystem , Pandemics , Geologic Sediments , Water Pollutants, Chemical/analysis , Environmental Monitoring , Middle East , Water/analysis , Tunisia
18.
Int J Environ Res Public Health ; 20(8)2023 04 14.
Article in English | MEDLINE | ID: covidwho-2299074

ABSTRACT

Legionella is a pathogen that colonizes soils, freshwater, and building water systems. People who are most affected are those with immunodeficiencies, so it is necessary to monitor its presence in hospitals. The purpose of this study was to evaluate the presence of Legionella in water samples collected from hospitals in the Campania region, Southern Italy. A total of 3365 water samples were collected from January 2018 to December 2022 twice a year in hospital wards from taps and showers, tank bottoms, and air-treatment units. Microbiological analysis was conducted in accordance with the UNI EN ISO 11731:2017, and the correlations between the presence of Legionella and water temperature and residual chlorine were investigated. In total, 708 samples (21.0%) tested positive. The most represented species was L. pneumophila 2-14 (70.9%). The serogroups isolated were 1 (27.7%), 6 (24.5%), 8 (23.3%), 3 (18.9%), 5 (3.1%), and 10 (1.1%). Non-pneumophila Legionella spp. represented 1.4% of the total. Regarding temperature, the majority of Legionella positive samples were found in the temperature range of 26.0-40.9 °C. An influence of residual chlorine on the presence of the bacterium was observed, confirming that chlorine disinfection is effective for controlling contamination. The positivity for serogroups other than serogroup 1 suggested the need to continue environmental monitoring of Legionella and to focus on the clinical diagnosis of other serogroups.


Subject(s)
Legionella pneumophila , Legionella , Humans , Chlorine/analysis , Water Supply , Hospitals , Environmental Monitoring , Water/analysis , Water Microbiology
19.
Med Gas Res ; 13(4): 212-218, 2023.
Article in English | MEDLINE | ID: covidwho-2298723

ABSTRACT

The medical use of molecular hydrogen, including hydrogen-rich water and hydrogen gas, has been extensively explored since 2007. This article aimed to demonstrate the trend in medical research on molecular hydrogen. A total of 1126 publications on hydrogen therapy were retrieved from the PubMed database until July 30, 2021. From 2007 to 2020, the number of publications in this field had been on an upward trend. Medical Gas Research, Scientific Report and Shock have contributed the largest number of publications on this topic. Researchers by the name of Xue-Jun Sun, Ke-Liang Xie and Yong-Hao Yu published the most studies in the field. Analysis of the co-occurrence of key words indicated that the key words "molecular hydrogen," "hydrogen-rich water," "oxidative stress," "hydrogen gas," and "inflammation" occurred most frequently in these articles. "Gut microbiota," "pyroptosis," and "COVID-19" occurred the most recently among the keywords. In summary, the therapeutic application of molecular hydrogen had attracted much attention in these years. The advance in this field could be caught up by subscribing to relevant journals or following experienced scholars. Oxidative stress and inflammation were the most important research directions currently, and gut microbiota, pyroptosis, and coronavirus disease 2019 might become hotspots in the future.


Subject(s)
COVID-19 , Humans , Bibliometrics , Hydrogen/therapeutic use , Oxidative Stress , Water
20.
Molecules ; 28(8)2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2304352

ABSTRACT

Chloroquine phosphate (CQP) is effective in treating coronavirus disease 2019 (COVID-19); thus, its usage is rapidly increasing, which may pose a potential hazard to the environment and living organisms. However, there are limited findings on the removal of CQP in water. Herein, iron and magnesium co-modified rape straw biochar (Fe/Mg-RSB) was prepared to remove CQP from the aqueous solution. The results showed that Fe and Mg co-modification enhanced the adsorption efficiency of rape straw biochar (RSB) for CQP with the maximum adsorption capacity of 42.93 mg/g (at 308 K), which was about two times higher than that of RSB. The adsorption kinetics and isotherms analysis, as well as the physicochemical characterization analysis, demonstrated that the adsorption of CQP onto Fe/Mg-RSB was caused by the synergistic effect of pore filling, π-π interaction, hydrogen bonding, surface complexation, and electrostatic interaction. In addition, although solution pH and ionic strength affected the adsorption performance of CQP, Fe/Mg-RSB still had a high adsorption capability for CQP. Column adsorption experiments revealed that the Yoon-Nelson model better described the dynamic adsorption behavior of Fe/Mg-RSB. Furthermore, Fe/Mg-RSB had the potential for repeated use. Therefore, Fe and Mg co-modified biochar could be used for the remediation of CQP from contaminated water.


Subject(s)
COVID-19 , Environmental Pollutants , Water Pollutants, Chemical , Humans , Iron/chemistry , Magnesium , Environmental Pollutants/analysis , Water , COVID-19 Drug Treatment , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL